$S=1.021$
5104 reflections
208 parameters
H atoms: see below

$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0272 P)^{2}\right.$
\quad
$\quad+0.0057 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C) Absolute structure:
Flack (1983)
Flack parameter $=0.040(12)$

Table 3. Selected geometric parameters $\left.\left(\AA^{\circ}\right)^{\circ}\right)$ for (2)

$\mathrm{P}-\mathrm{Nl}$	2.124 (5)	$\mathrm{C} 11-\mathrm{Cl2}$	1.487 (10)
$\mathrm{Pl}-\mathrm{N} 2$	2.019 (5)	$\mathrm{C} 12-\mathrm{Cl} 3$	1.467 (9)
$\mathrm{Pl}-\mathrm{C} 22$	2.108 (5)	O21-C21	1.290 (6)
$\mathrm{Pl}-\mathrm{O} 21$	2.058 (4)	O23-C23	1.243 (7)
O11-C11	1.222 (8)	C21-C22	1.375 (8)
O13-C13	1.220 (8)	C22-C23	1.436 (8)
$\mathrm{C} 12-\mathrm{Pl}-\mathrm{Nl}$	173.7 (2)	$\mathrm{Pt}-\mathrm{O} 21-\mathrm{C} 21$	120.5 (3)
$\mathrm{C} 12-\mathrm{Pr}-\mathrm{N} 2$	89.8 (2)	O11-C11-C12	122.5 (7)
$\mathrm{C} 22-\mathrm{Pt}-\mathrm{O} 21$	94.6 (2)	$\mathrm{Ol3-C13-C12}$	122.3 (7)
$\mathrm{O} 21-\mathrm{Pt}-\mathrm{Nl}$	91.5 (2)	$\mathrm{C11-C12-C13}$	115.1 (6)
$\mathrm{O} 21-\mathrm{Pt}-\mathrm{N} 2$	175.4 (2)	O21-C21-C22	124.2 (5)
$\mathrm{N} 1-\mathrm{Pt}-\mathrm{N} 2$	84.1 (2)	O23-C23-C22	123.1 (6)
$\mathrm{Pt}-\mathrm{Cl} 2-\mathrm{Cl} 3$	109.5 (4)	C21-C22-C23	123.2 (6)
$\mathrm{Pl}-\mathrm{Cl} 2-\mathrm{Cll}$	104.5 (4)		
$\mathrm{Pl}-\mathrm{O} 21-\mathrm{C} 21-\mathrm{C} 22$	-6.2 (8)		

Table 4. Hydrogen-bonding geometry ($\left(\AA^{\circ}{ }^{\circ}\right)$ for (2)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 5 \cdots \mathrm{O} 23^{1}$	0.90	2.16	$2.985(7)$	152
$\mathrm{~N} 2-\mathrm{H} 6 \cdots \mathrm{O} 23^{11}$	0.90	2.20	$3.046(7)$	157
Symmetry codes: (i) $\frac{1}{2}-x, 1-y, \frac{1}{2}+z$; (ii) $x, y, 1+z$.				

For both compounds, all H atoms other than those of water were included as riding and the positions of the water H atoms in (1) were refined with $\mathrm{O}-\mathrm{H}$ constrained to 0.82 (3) \AA; $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom). A disordered conformation was observed in (1) for the enolate chdo ${ }^{-}$and the site-occupancy factors of C25 and C251 were refined to 0.65 (2) and 0.35 (2), respectively. Each member of the Friedel pairs in (2) was treated as an independent observation in the least-squares refinement.

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993a); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1993b); program(s) used to solve structures: SHELXS97 (Sheldrick, 1990); program(s) used to refine structures: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97.

The authors thank Mr Takahiro Kishi for his help in the preparative work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1013). Services for accessing these data are described at the back of the journal.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hollis, L. S., Amundsen, A. R. \& Stern, E. W. (1985). J. Am. Chem. Soc. 107, 274-276.

Ito, T., Kiriyama, T., Nakamura, Y. \& Yamamoto, A. (1976). Bull. Chem. Soc. Jpn, 49, 3257-3264.
Molecular Structure Corporation (1993a). MSC/AFC Diffractometer Control Softurare. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1993b). TEXSAN. Single Cŗstal Structure Analysis Software. Version 1.6. MSC. 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. T. C., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1990). Acta Crist. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Cnustal Structures. University of Göttingen, Germany.
Yuge, H. \& Miyamoto, T. K. (1996). Acta Cryst. C52, 3002-3005.
Yuge, H. \& Miyamoto, T. K. (1997). Acta Crist. C53, 1816-1819.

Acta Cryst. (1999). C55, 1620-1623

Sodium hydrogen trans-glutaconate and ammonium hydrogen trans-glutaconate

Jun-ichiro Taka \dagger and Setsuo Kashino

Department of Chemistry, Faculty of Science, Okayama
University, Tsushima, Okavama 700-8530, Japan. E-mail:
kashinos@cc.okayama-u.ac.jp
(Received 26 April 1999; accepted 22 June 1999)

Abstract

Sodium hydrogen trans-glutaconate (sodium hydrogen trans-pent-2-ene-1,5-dioate, $\mathrm{Na}^{+} \cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}_{4}^{-}$), (I), crystallizes in the monoclinic space group $P 2_{1} / n$ with $Z=4$, and ammonium hydrogen trans-glutaconate (ammonium hydrogen trans-pent-2-ene-1,5-dioate, $\mathrm{NH}_{4}^{+} \cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}_{4}^{-}$), (II), crystallizes in the orthorhombic space group lbam with $Z=8$. In both crystals, a non-centrosymmetric O $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is formed between the carboxyl and carboxylate groups of neighboring anions. The Na^{+} cation in (I) is coordinated by six O atoms. There are two symmetry-independent NH_{4}^{+}cations in (II). The number of hydrogen bonds around each NH_{4}^{+}cation is four.

Comment

The crystal structures of the title compounds, sodium hydrogen trans-glutaconate, (I), and ammonium hydrogen trans-glutaconate, (II), have been determined as part of a detailed investigation of H -atom bonding behavior in short asymmetric $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in

[^0]the acid salts of carboxylic acids (Taka et al., 1998). Because a molecule of trans-glutaconic acid has only mirror symmetry, it was expected that the acid salts of trans-glutaconic acid might form asymmetric $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

(I)

(II)

In (I), the ionized carboxylate group is attached to C3, while in (II), it is attached to C1 (Fig. 1). Although the structure of (II), built up only from the non-H atoms, has

(a)

(b)

Fig. 1. ORTEP-3 (Farrugia, 1997) representations of (a) (I) and (b) (II), with the atomic numbering of non-H atoms. Displacement ellipsoids are shown at the 50% probability level for non- H atoms and H atoms are drawn as spheres of arbitrary radii.
non-space-group translation ($\frac{1}{2}, 0,0$), space group Ibam and the setting of the crystal axes are correct when the H atoms are taken into consideration. The hydrogen trans-glutaconate anion in (II) has mirror symmetry. In this anion, only the H atom attached to C 3 occupies the general position $16 k$, and the other atoms of the anion occupy special position $8 j$. Two symmetrically independent N atoms occupy special positions $4 a$ and $4 b$, and H atoms of the ammonium cations occupy a general position (Fig. 2).

Fig. 2. The crystal structure of (II) viewed down the c axis. The anions at $z=\frac{1}{2}$ are drawn for clarity.

In both crystals, a chain of anions is formed along [010] through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. In the chains, the anions are arranged head-to-tail. Thus, the hydrogen bonds are not centrosymmetric. The $\mathrm{O} \cdots \mathrm{O}$ distances [2.485 (3) \AA in (I) and 2.513 (3) \AA in (II)] are longer than the distance of 2.443 (2) \AA found in ammonium hydrogen tartronate (Taka et al., 1998). Disorder was not found for the H atoms involved in the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in (I) and (II) in contrast with the case of ammonium hydrogen tartronate. The Na^{+}cation in (I) is coordinated by six O atoms. Each NH_{4}^{+}cation in (II) forms four hydrogen bonds, one of which is symmetrically independent.

Experimental

Crystals of (I) were grown by slow evaporation from an aqueous solution of trans-glutaconic acid (Aldrich) and sodium carbonate in a $2: 1$ molar ratio. Crystals of (II) were grown by slow evaporation from an aqueous solution of trans-glutaconic acid and ammonia in a $1: 1$ molar ratio.

Compound (I)

Crystal data

$\mathrm{Na}^{+} \cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}_{4}^{-}$	Mo $K \alpha$ radiation
$M_{r}=152.082$	$\lambda=0.71073 \AA$

$\mathrm{Na}^{+} \cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}_{4}^{-}$
$M_{r}=152.082$
$\lambda=0.71073 \AA$

Monoclinic
$P 2_{1} / n$
$a=5.290(4) \AA$
$b=18.214$ (6) \AA
$c=6.781(3) \AA$
$\beta=111.66(4)^{\circ}$
$V=607.2(1) \AA^{3}$
$Z=4$
$D_{x}=1.664 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-5R diffractometer $\omega / 2 \theta$ scans
Absorption correction: none
1543 measured reflections
1402 independent reflections 993 reflections with
$I>\sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.041 \\
& \theta_{\text {max }}=27.5^{\circ} \\
& h=0 \rightarrow 6 \\
& k=0 \rightarrow 23 \\
& l=-8 \rightarrow 8
\end{aligned}
$$

3 standard reflections every 97 reflections intensity decay: none

Refinement

Refinement on F
$R=0.069$
$w R=0.060$
$S=1.14$
993 reflections
111 parameters
All H-atom parameters
\quad refined

Refinement on F
$w=1 / \sigma^{2}(F)$
$R=0.069$
$(\Delta / \sigma)_{\max }=0.014$
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}_{\mathrm{max}} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.35 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (I)

$\mathrm{NaI}-\mathrm{O} 2^{1}$	2.326 (3)	O2-C4	1.303 (4)
$\mathrm{Nal}-\mathrm{O}_{4}{ }^{\text {ii }}$	2.370 (3)	$\mathrm{O} 3-\mathrm{C} 5$	1.234 (4)
$\mathrm{Na}-\mathrm{O3}^{\text {Ui }}$	2.462 (3)	O4--C5	1.286 (4)
$\mathrm{Na}-\mathrm{O} 3$	2.474 (3)	$\mathrm{Cl}-\mathrm{C} 2$	1.360 (5)
$\mathrm{Na} 1-\mathrm{Ol}^{\text {iv }}$	2.507 (3)	$\mathrm{Cl}-\mathrm{C} 4$	1.479 (5)
$\mathrm{Nal}-\mathrm{O4}^{\text {v }}$	2.736 (3)	$\mathrm{C} 2-\mathrm{C} 3$	1.450 (5)
$\mathrm{Ol}-\mathrm{C} 4$	1.210 (4)	C3-C5	1.495 (5)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4$	122.0 (4)	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{Cl}$	111.5 (3)
$\mathrm{C1}-\mathrm{C} 2-\mathrm{C} 3$	121.7 (3)	$\mathrm{O} 3-\mathrm{C} 5-\mathrm{O} 4$	123.9 (3)
C2-C3-C5	118.8 (3)	O3-C5-C3	121.7 (3)
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{O} 2$	123.1 (3)	$\mathrm{O} 4-\mathrm{C} 5-\mathrm{C} 3$	114.4 (3)
$\mathrm{Ol}-\mathrm{C} 4-\mathrm{Cl}$	12		

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$: (ii) $1+x, y, z$: (iii) $1-x, 1-y,-z$; (iv) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (v) $1-x, 1-y, 1-z$.

Table 2. Hydrogen-bonding geometry ($\left(\AA^{\circ}\right)$ for (I)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots 4^{\mathrm{i}}$	$0.88(4)$	$1.61(4)$	$2.485(3)$	$173(4)$

Symmetry code: (i) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.

Compound (II)

Crystal data
$\mathrm{NH}_{4}^{+} \cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}_{4}^{-}$
Mo $K \alpha$ radiation
$M_{r}=147.13$
$\lambda=0.71073 \AA$

Orthorhombic
Ibam
$a=10.669$ (5) \AA
$b=18.479$ (6) \AA
$c=7.280$ (6) \AA
$V=1435(2) \AA^{3}$
$Z=8$
$D_{x}=1.362 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Rigaku AFC-5R diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
1662 measured reflections
1476 independent reflections
888 reflections with $I>\sigma(I)$
$R_{\text {int }}=0.012$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 16$
$k=0 \rightarrow 27$
$l=-1 \rightarrow 10$
3 standard reflections every 97 reflections intensity decay: none

Refinement

Refinement on F
$R=0.077$
$w R=0.067$
$S=1.51$
888 reflections
82 parameters
All H -atom parameters refined

Cell parameters from 25 reflections
$\theta=9.5-12.0^{\circ}$
$\mu=0.119 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prismatic
$0.50 \times 0.30 \times 0.18 \mathrm{~mm}$
Colorless

Table 3. Selected geometric parameters $\left.\left(\AA^{\circ}\right)^{\circ}\right)$ for (II)

$\mathrm{O} 1-\mathrm{C} 4$	$1.240(3)$	$\mathrm{Cl}-\mathrm{C} 2$	$1.374(4)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.280(3)$	$\mathrm{C} 1-\mathrm{C} 4$	$1.496(4)$
$\mathrm{O} 3-\mathrm{C} 5$	$1.202(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.430(4)$
$\mathrm{O} 4-\mathrm{C} 5$	$1.314(3)$	$\mathrm{C} 3-\mathrm{C} 5$	$1.479(4)$
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 4$	$120.5(3)$	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 1$	$114.0(3)$
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	$122.6(3)$	$\mathrm{O} 3-\mathrm{C} 5-\mathrm{O} 4$	$122.8(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 5$	$118.2(3)$	$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 3$	$125.4(3)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{O} 2$	$123.4(2)$	$\mathrm{O} 4-\mathrm{C} 5-\mathrm{C} 3$	$111.8(3)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{Cl}$	$122.6(2)$		

Table 4. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$ for (II)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{O} \cdots 2^{1}$	$1.05(4)$	$1.50(4)$	$2.513(3)$	$161(3)$
$\mathrm{N} 1-\mathrm{HIN} \cdots \mathrm{O} 1$	$0.98(2)$	$2.02(2)$	$2.986(2)$	$168(2)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 2$	$0.88(2)$	$2.04(3)$	$2.848(2)$	$153(2)$

Symmetry code: (i) $\frac{3}{2}-x, \frac{1}{2}+y, 1-z$.
For both compounds, data collection: RASAII (Rigaku Corporation, 1990); cell refinement: RASAII; program(s) used to solve structures: SIR (Burla et al., 1989); program(s) used to refine structures: TEXSAN (Molecular Structure Corporation, 1985); molecular graphics: ORTEP-3 (Farrugia, 1997).

This work was supported in part by a Grant-in-Aid for Scientific Research (No. 09640609) from the Ministry of Education, Science, Sports and Culture, Japan.

[^1]
References

Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. \& Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.

Farrugia, L. J. (1997). ORTEP-3 for Windows. University of Glasgow, Scotland.
Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Rigaku Corporation (1990). RASAII. X-ray Data Collection Package. Rigaku Corporation, Tokyo, Japan.
Taka, J., Ogino, S. \& Kashino, S. (1998). Acta Cryst. C54, 384-386.

Acta Cryst. (1999). C55, 1623-1625

A linear-chain silver(I) coordination polymer with tetrakis(isopropylthio)-pbenzoquinone

Yusaku Suenaga, ${ }^{a}$ Takayoshi Kuroda-Sowa, ${ }^{a}$ Masahio Maekawa and Megumu Munakata ${ }^{a}$

${ }^{a}$ Department of Chemistry, Kinki University 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan, and ${ }^{\text {b }}$ Research Institute for Science and Technology, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan. E-mail: suenagay@chem.kindai.ac.jp
(Received I8 February 1999; accepted 20 April 1999)

Abstract

The silver(I) complex of tetrakis(isopropylthio)-pbenzoquinone (tpq), catena-poly[silver(I)- $\mu-[2,3,5,6-$ tetrakis (isopropylthio) - p - benzoquinone - $\left.S^{2}, S^{3}: S^{5}, S^{6}\right]$] perchlorate acetone solvate, $\left\{\left[\mathrm{Ag}\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~S}_{4} \mathrm{O}_{2}\right)\right] \mathrm{ClO}_{4}\right.$-$\left.\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right\}_{n}$, has been prepared and the molecular structure determined. The silver ion prefers a tetrahedral coordination geometry comprising four S atoms from two different tpq molecules, giving a linear-chain structure of alternating metal cations and organic ligands. Also, the four isopropyl groups of the tpq molecule lie in the perpendicular direction of the plane of the benzoquinone ring.

Comment

Many metal-dithiolene complexes have been synthesized and studied (McCleverty, 1968; Eisenberg, 1970; Rivera \& Engler, 1979; Munakata et al., 1995). We synthesized aromatic multi-alkyl thioether ligands and have recently reported the formation of a metal-complex polymer with aromatic multi-alkyl thioether ligands. We have been able to use the metal-complex polymer to construct linear chain $[\mathrm{Cu}(\mathrm{hmb})] \mathrm{PF}_{6}[\mathrm{hmb}$ is hexakis(methylthio)benzene; Suenaga et al., 1998], zigzag
chain $\left[(\mathrm{CuI})_{2}(\mathrm{tmb})\right][\mathrm{tmb}$ is $1,2,4,5$-tetrakis(methylthio)benzene; Ohrui et al., 1996], two-dimensional $\left[(\mathrm{CuBr})_{2}(\mathrm{tmb})\right]$ sheets (Suenaga et al., 1997) and a two-dimensional $[\mathrm{Ag}(\mathrm{hmb})] \mathrm{PF}_{6}$ network with interchain $\mathrm{S} \cdots \mathrm{S}$ contacts (Suenaga et al., 1999). We prepared tetrakis(isopropylthio)-p-benzoquinone (tpq) for use in place of hmb as an acceptor organic compound. We report here the polymeric structure of $[\mathrm{Ag}(\mathrm{tpq})]\left(\mathrm{ClO}_{4}\right)$ acetone, (I), as part of our studies on two and three-dimensional polymers of metal ions interconnected by aromatic ligands with novel stereochemistry and special physical properties.

tpq

hmb

tmb

(I)

The Ag^{1} atom lies on the twofold axis along \mathbf{a}. The $\mathrm{Cl1}, \mathrm{O} 3$, and O 4 atoms of the perchlorate ion, the Ol , $\mathrm{C} 2, \mathrm{O} 2$ and C 4 atoms of tpq, and the O 6 and C 11 atoms of acetone lie on mirror planes perpendicular to \mathbf{c}. Each Ag^{1} atom is coordinated by four S atoms from two tpq ligands in a distorted tetrahedral geometry, with bond angles around silver ranging from 81.25 (7) to $151.5(1)^{\circ}$. The $\mathrm{Ag}-\mathrm{S}$ distances of 2.521 (2) and 2.601 (2) \AA are comparable to those in the complexes of hmb with silver(I) hexafluorophosphate [2.565 (2) Å]. Four isopropyl groups are perpendicular to the benzoquinone ring plane. Interestingly, all the isopropyl groups are directed to the same side of the S -$\mathrm{Ag}^{\mathrm{I}}-\mathrm{S}$ plane. The suggested classification for the description of possible 'leg' orientations in spider host molecules comprises 14 types (MacNicol et al., 1985); descriptors a and b denote side-chain hydrocarbon moieties projecting, respectively, above and below the mean plane of the benzene core, e.g. the conformation of hexakis(phenyloxy)benzene and hexakis(phenylthio)benzene, with regular alternation of pairs of legs, is $a b a b a b$. In contrast, complex (I) exhibits the previously unknown type aaaa conformation. In this complex, the O atom of the acetone solvent molecule is positioned on the same side of the four isopropyl groups. This stereospecific orientation may occur because of dipoledipole interactions. Thus, one tpq bridges two Ag atoms

[^0]: \dagger Present address: Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.

[^1]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1012). Services for accessing these data are described at the back of the journal.

